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Autism Risk Genes Are Evolutionarily Ancient and Maintain a Unique
Feature Landscape that Echoes Their Function
Emily L. Casanova , Andrew E. Switala, Srini Dandamudi, Allison R. Hickman, Joshua Vandenbrink,
Julia L. Sharp, Frank Alex Feltus, and Manuel F. Casanova

Previous research on autism risk (ASD), developmental regulatory (DevReg), and central nervous system (CNS) genes suggests
they tend to be large in size, enriched in nested repeats, and mutation intolerant. The relevance of these genomic features is
intriguing yet poorly understood. In this study, we investigated the feature landscape of these gene groups to discover struc-
tural themes useful in interpreting their function, developmental patterns, and evolutionary history. ASD, DevReg, CNS,
housekeeping, and whole genome control (WGC) groups were compiled using various resources. Multiple gene features of
interest were extracted from NCBI/UCSC Bioinformatics. Residual variation intolerance scores, Exome Aggregation Consor-
tium pLI scores, and copy number variation data from Decipher were used to estimate variation intolerance. Gene age and
protein–protein interactions (PPI) were estimated using Ensembl and EBI Intact databases, respectively. Compared to WGC:
ASD, DevReg, and CNS genes are longer, produce larger proteins, maintain greater numbers/density of conserved noncoding
elements and transposable elements, producemore transcript variants, and are comparatively variation intolerant. After con-
trolling for gene size, mutation tolerance, and clinical association, ASD genes still retainmany of these same features. In addi-
tion, we also found that ASD genes that are extremelymutation intolerant have larger PPI networks. These data supportmany
of the recent findings within the field of autism genetics but also expand our understanding of the evolution of these broad
gene groups, their potential regulatory complexity, and the extent to which they interact with the cellular network.
AutismRes 2019, 12: 860–869.©2019 International Society for AutismResearch,Wiley Periodicals, Inc.

Lay Summary: Autism risk genes aremore ancient compared to other genes in the genome. As such, they exhibit physical fea-
tures related to their age, including long gene and protein size and regulatory sequences that help to control gene expression.
They share many of these same features with other genes that are expressed in the brain and/or are associated with prenatal
development.
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Introduction

Most genes within the human genome carry the impression
of hundreds of millions of years of evolutionary history.
Features such as the basic structure, size, and component parts
of a gene all provide a record reflective of function and the
selective forces driving that gene over evolutionary timescales.
This record can help us clarify species relatedness, better
understand gene regulation, and even predict probable muta-
tionpatterns [De Smith et al., 2008;Nikaido et al., 2001; Sironi
et al., 2005]. Though early Drosophila researchers originally
defined the gene as the smallest unit of inheritance, it is never-
theless a gestalt of numerous component parts, which are
themselves subject to selective forces [Portin&Wilkins, 2017].

Previous research suggests that genes associatedwith autism
spectrumdisorder (ASD)maintain structural features thatmay
be useful in understanding their functions, mutation propen-
sity, and evolutionary histories. For instance, King et al. [2013]
reported that the inhibition of topoisomerase 1 specifically
reduced the expression of extremely long genes (200,000+ bp)
within human neurons. In particular, they found this group
was enriched in autism risk genes, suggesting ASD genes are
longer than expected. That same research group went on
to study the effects of topoisomerase inhibition on synaptic
genes,many of which overlap autism risk, finding that synap-
tic protein expression and synaptic transmission were signifi-
cantly impaired [Mabb et al., 2014]. Many of the long
neuronal genes implicated in ASD are downstream targets of
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risk genes such as the Rett’s-linked, MECP2, and Fragile X
syndrome-associated, FMR1, both of which have recently
been identified by our group as major hubs linking sizable
gene clusters associated with syndromic autism [Casanova,
Gerstner, Sharp, Casanova, & Feltus, 2018; Gabel et al., 2015;
Ouwenga&Dougherty, 2015].

Surprisingly, in contrast to reports such as King et al.
[2013], Krishnan et al. [2016] found that likely gene dis-
rupting (LGD) mutations do not disproportionately target
long, brain-expressed genes, suggesting conflicting evi-
dence thatwe hope to address with the current work.

Long genes, particularly those involved in the central ner-
vous system (CNS) and developmental regulation, are
enriched in conserved noncoding elements (CNEs) [Sironi,
Menozzi, Comi, Cagliani, et al., 2005]. What is more, the
proteins of genes with high CNE density are more highly
conserved (i.e., mutation intolerant) across species and are
functionally complex, the latter a feature characteristic of
long ancient genes that form major hubs in the eukaryotic
genome [Ekman, Light, Björklund, & Elofsson, 2006]. The
size overlap between these genes and those of ASD risk
genes suggest the latter may maintain many of the same
features, a hypothesis that the followingwork supports.

Here we argue that understanding a gene’s structure and
deep history provides context within which human devel-
opment and related pathologies can be viewed. For instance,
the realization that overall gene size shares links with both
gene function and regulatory complexity allows us to pre-
dict that long genes, such as those associated with ASD,may
contain a plethora of CNE that are potential targets for dele-
terious mutations [King et al., 2013; Sironi, Menozzi, Comi,
Cagliani, et al., 2005]. In fact, scientists have recently found
that some autistic probands exhibit enrichment of de novo
mutationswithinputative regulatory sites in andnear recog-
nized major effect genes [Takata, Ionita-Laza, Gogos, Xu, &
Karayiorgou, 2016; Turner et al., 2016; Williams et al.,
2018]. Short et al. [2018] have also estimated that within
neurodevelopmental patient groupswithout diagnostic cod-
ing variants, 1–3% harbor de novo mutations in regulatory
elements that are involved in fetal brain development. Only
a small percentage (0.15%) of these mutations behaves in a
dominant fashion, suggesting comparatively lower pene-
trance and etiological complexity.

The integration of evolutionary theory into autism geno-
mics can complementmodern clinical research, enriching our
understanding of these genes and the selective forces that
drive change (or stasis) within them. As we will show in the
following material, ASD, CNS, and developmental regulatory
(DevReg) genes allmaintain a similar feature landscape,which
provides important clues as to their evolutionary histories,
their functions (both as individual gene products and as cogs
within the larger cellular network), and their propensities for
mutation. It is our hope that this area of researchmay eventu-
ally yield context fromwhich one canmake clinically relevant
predictions about the genome andhumandevelopment.

Methods
Data Compilation

Gene, transcript, and protein sequence data were extracted
from NCBI (ftp://ftp.ncbi.nlm.nih.gov) and from UCSC
Genome Bioinformatics [Karolchik et al., 2004]. A gene was
included in the study if and only if it:

• was attested in both databases,
• was present in human reference genome (hg19/

GRCh37),
• had at least one transcript with a validated reference

sequence,
• and that transcript coded for a protein product.

Protein-coding genes were determined from the
knownGenePep annotation on UCSC Genome Browser
and therefore include also predicted proteins.

The initial gene set for the whole genome control (WGC)
was composed of all genes fulfilling the above criteria
(N = 19,015 genes). The ASD gene set was compiled using a
combination of the SFARI database (categories 1–2 and syn-
dromic ratings) and the data described in Casanova, Sharp,
Chakraborty, Sumi, and Casanova [2016], the latter com-
prising a collection of largely syndromic major effect genes
associated with autism (N = 157 genes) [Abrahams et al.,
2013]. Comparison intellectual disability (ID) genes (unas-
sociated with autism) were borrowed from Casanova et al.
[2016, 2018] (N = 152). All genes even weakly associated
with autism, including single case reports, have been
removed providing a “pure” list of ID genes (Supplementary
Material 1, tab “ID_genes”). Syndromic and nonsyndromic
gene subgroups were compiled according to SFARI annota-
tion (category 1–2, syndromic). In addition, genes that were
reported by Casanova et al. [2016] that were not already
rated “syndromic” by SFARI (orwere not included in the 1–2
categories) were placed in the syndromic subgroup since all
of these genes are strongly associated with autism-linked
genetic syndromes (syndromic N = 119, nonsyndromic
N = 38) (Supplementary Materials 1, tab “SyndromicVsNon
syndromic”).

Meanwhile, a DevReg gene set was compiled using the
gene ontology (GO) term, Regulation of Developmental Pro-
cess (GO: 0050793; N = 2,175 genes) [Gene Ontology Con-
sortium, 2015]. Likewise, the CNS gene set was derived
from GO terms beginning with “central nervous system”

(set C) or were categorized under terms that were subsumed
under the same (N = 790 genes). And, finally, the house-
keeping (HK) gene list was borrowed from Eisenberg and
Levanon [2013] (N = 3,804 genes). In total, there were five
overlapping preliminary gene groups: WGC, ASD, DevReg,
CNS, and HK. Analyses were duplicated using both over-
lapping and nonoverlapping gene sets, the latter to ensure
reproducibility of the findings (Table 1).

All genes were identified internally by NCBI Gene
ID. Quantities derived from these databases included
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natural log gene length, number of transcripts (considering
only transcripts with a validated reference sequence), and
natural log of protein length coded by the canonical (lon-
gest) transcript. Identification of intronic transposable ele-
ment (TE) was performed using the UCSC RepeatMasker
[Karolchik et al., 2004]. Intergenic, exonic, and promoter
TEs and non-TE repeat classes, such as microsatellites, and
unclassified repeats were excluded due to small numbers
and different selective pressures on insertion and retention.
For TE-specific analyses, genes with a TE count of zero were
also removed. Meanwhile, intronic CNE were abstracted
from the Multiz alignment of hg19 and 99 other vertebrate
genomes [Blanchette et al., 2004]. Following Sironi,
Menozzi, Comi, Cagliani, et al. [2005], we considered only
eutherian [alignment of hg19 and mm10 (Mus musculus)]
downstream intronic sequences. The first intron was dis-
carded as per Sironi, Menozzi, Comi, Cagliani, et al. [2005],
as the presence of increased regulatory content is well recog-
nized within these gene regions. Allelic tolerance was esti-
mated using the residual variation intolerance score (RVIS)
developed by Petrovski, Wang, Heinzen, Allen, and
Goldstein [2013] and Exome Aggregation Consortium
(ExAC) pLI scores were acquired from the ExACDatabase for
additional exploratory analyses concerning loss-of-function
(LOF) tolerance [Lek et al., 2016].
In order to identify protein–protein interactions (PPI), all

genes were queried against the EBI Intact database (https://
www.ebi.ac.uk/intact; PMID:24234451) on 3/12/2019. Only
unique human (txid9606) interactors classified as “physical
association” or “direct interaction” with an intact-miscore
greater than or equal to 0.5 were counted [Orchard et al.,
2013]. In terms of general gene age, Ensemblwas used to esti-
mate the oldest known eukaryotic homolog via the gene tree
feature [Herrero et al., 2016]. All genes were then assigned to
one of three nominal groups relative to their oldest known

eukaryotic homologs: (a) “single-celled eukaryotes,” (b) “bil-
ateria,” and (c) “chordates and younger.”

Finally, we performed an analysis to determine to what
extent our experimental gene groups fell near or within
common and rare copy number variations (CNVs). Both
overlapping and nonoverlapping versions of the experi-
mental gene groups were assessed. CNV and their general
population frequencies were pulled fromDecipher (https://
decipher.sanger.ac.uk/about#downloads/data) [Firth et al.,
2009]. The data included the CNV, its chromosomal loca-
tion, and the number of deletion/duplication observations
and population frequency. Deletions/duplications whose
frequencywas greater than zero but less than or equal to 1%
were considered “rare” (deletion N = 20,808; duplication
N = 13,206). Deletions/duplications whose population
frequency was greater than 1% were labeled “common”
(deletion N = 21,691; duplication N = 6,355). Because the
original gene list used within this study had a build of
GRCh37 and Decipher used GRCh38, genes that were not
included in both builds were dropped from the analysis
(see Supplementary Materials 1, Tab “CNV”). Size-matched
controls were generated for each experimental gene list
according to size. Each experimental gene was randomly
paired with a control gene whose gene size fell within
�10% of the experimental gene and likewise did not over-
lap any of the other groups. Each subsequent control gene
was removed from the remaining list of potential genes.
The potential control list was reset after the completion of
each list, such that duplicatesmay exist across size-matched
control lists. (This samemethodwas used to build the ExAC
pLI-matched controls (�10%of the pLI score) used for other
analyses.)

Statistical Analyses

Several sets of analyses were performed. The first analysis
using WGC involves mutually exclusive gene sets (Table 1)
and was analyzed using one-way ANOVAs. In the second,
each of our overlapping gene sets of interest (ASD, DevReg,
CNS, HK) was compared to WGC using two-sample t tests
(gene and protein lengths) and two-sample Wilcoxon rank
sum tests (transcript number, total/relative TE, total/relative
CNE, and RVIS). This set of data analyses were conducted in
R Statistical Software and significancewas set at α = 0.05.

The second set of analyses utilized both size- and ExAC
pLI-matched control genes for each of the experimental
gene lists. Once again, this was performed on both over-
lapping and mutually exclusive gene sets. In addition, two-
sample t tests (gene and protein lengths) and two-sample
Wilcoxon rank sum tests (transcript number, total/relative
TE, total/relative CNE, RVIS, PPI, ExAC pLI, and homolog
age)were again used and analyzed via JASP (α = 0.05).

CNV data were analyzed using a Poisson distribution
(Decipher cohort N = 28,428).

Table 1. A List of Nonoverlapping Gene Groups and Their
Frequencies

Gene types (nonoverlapping) Frequency Percent

ASD 71 0.37
ASD + CNS 14 0.07
ASD + CNS + HK 2 0.01
ASD + DevReg 21 0.11
ASD + DevReg + CNS 14 0.07
ASD + DevReg + CNS + HK 5 0.03
ASD + DevReg + HK 5 0.03
ASD + HK 25 0.13
CNS 369 1.94
CNS + HK 74 0.39
DevReg 1,487 7.82
DevReg + CNS 313 1.65
DevReg + CNS + HK 38 0.20
DevReg + HK 292 1.54
HK 3,360 17.67
WGC 12,925 67.97
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Results
Group Differences in the Gene Landscape

The distribution of gene and amino acid lengths differed sig-
nificantly across groups, the former having been reported pre-
viously by King et al. [2013] with respect to autism risk genes
(F scores between 37.5374 and 67.0384, P < 0.001) (Fig. 1,
Table 2). Post hoc analysis utilizing two-sample t tests indicated

that ASD,DevReg, andCNS genes, andproteinswere each sig-
nificantly longer than those of WGC (ASD/DevReg/CNS all
P < 0.0001), while HK genes and proteins were significantly
shorter (gene P = 0.0151, protein P < 0.0001). In addition, all
experimental gene groups, includingHK genes, appear to pro-
ducemore transcript variants thanWGC, suggestingpotential
regulatory complexity within these functional and clinical

Figure 1. Boxplots illustrating the distribution for variables of interest across the different gene groups. (Gene and protein lengths
represent the logarithmic value rather than absolute lengths.) Abbreviations: ASD, autism spectrum disorder; CNS, central nervous
system; DevReg, developmental regulatory; WGC, whole genome control; TE, transposable elements; CNE, conserved noncoding elements;
RVIS, residual variance intolerance score.
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groups (ASD P = 0.0015, DevReg P = 0.0015, CNS P < 0.0001,
HK P < 0.0001). It should be noted, as with most of the data
that will be presented here, there was considerable overlap
across groups. Therefore, although the experimental gene
groups are larger/smaller on average and produce varying
numbers of transcripts, not all associated genes differ dramati-
cally from the controls. The standard deviations presented
withinTable 2 attest to that fact.
There is evidence that long genes are believed to be

regulatorily and functionally complex [Neduva & Russell,
2005; Sironi, Menozzi, Comi, Cagliani, et al., 2005; Sironi
et al., 2005]. Potentially underlying some of that complex-
ity are noncoding elements, some of which are conserved
or even “ultraconserved” across species, clades, and stem
groups [Elgar & Vavouri, 2008; Polychronopoulos, King,
Nash,Tan,&Lenhard, 2017; Schwaiger et al., 2014]. Because
ASD, DevReg, and CNS genes are on average longer while
HK genes tend to be rather short, we studied the number
and density of intronic CNE across gene groups. We found
that, as expected by gene size, all gene groups significantly
differed from one another in both relative and total CNE
content: ASD, DevReg, and CNS genes appear to contain
greater relative and total CNE content compared to WGC
(all P < 0.0001), while total count within HK genes is com-
paratively low (P < 0.0001). However, relative density
of CNE in the introns of HK genes was higher than
WGC, suggesting that these genes may be more complex
than their size would otherwise indicate—a finding that
matches, for instance, the increase in transcript variations
derived from these genes.
CNEs are often derived from the insertion, retention, and

exaptation of TEs [Xie, Kamal, & Lander, 2006]. We there-
fore looked at total and relative densities of these elements
within the introns of our respective gene groups. Similar to
CNE, total TE count was significantly enriched in ASD
(P < 0.001), DevReg (P = 0.0067), and CNS gene sets
(P < 0.0001), while it was low in HK genes (P < 0.0001). In
contrast to CNE, however, relative density of TE was lower
in DevReg and CNS genes, higher in HK genes (P < 0.0001),
and did not significantly differ in autism genes compared to
the other groups (P = 0.4506). Therefore, TE density seems
to vary strongly by gene size across gene groups, suggesting
that mechanisms peculiar to long genes select against
higher density despite greater TE content, potentially
adding to the larger gene lengths we see in these functional
and clinical groups.
Perhaps counter to intuition, long genes are relatively

mutation intolerant [Sironi, Menozzi, Comi, Cagliani, et al.,
2005; Han et al., 2018]. This propensity is partly mechanis-
tic but also a reflection of gene function [Niu & Yang,
2011]. Given the variation in gene length across the gene
groups, we investigated genes’ tolerance to allelic variation
using RVIS and found that the RVIS distribution among the
groups significantly differed (Kruskal Wallis, x2 = 499.4761,
P < 0.0001). As one would expect given their average gene Ta
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size, ASD, DevReg, andCNS geneswere all relatively intoler-
ant to variation compared to WGC. In addition, in spite of
their tendency for a small gene size, HK genes were also
intolerant—an effect perhaps the result of their basal cellu-
lar function and, as will be discussed later, their older ages
[Eisenberg& Levanon, 2003].

Interestingly, Petrovski et al. [2015] have shown that vari-
ation intolerant genes tend to be dosage sensitive, exhibi-
ting LOF mutations primarily only in association with
disease states. We found that all gene groups, including
HK genes, are relatively mutation intolerant (experimental
pLI mean = 0.4151–0.7552, control pLI mean = 0.2902,

W = 5,023.5–214,062, P < 0.0001) (Fig. 2A). This was espe-
cially the case for the ASD genes (mean = 0.7552), sug-
gesting unique epigenetic patterning may make these genes
particularly vulnerable to LOFmutations. This matches well
with our previous findings of autosomal dominant enrich-
ment in genetic syndromeswith high rates of autism comor-
bidity, suggesting a striking pattern of haploinsufficiency in
major effect genes [Casanova et al., 2016]. Petrovski et al.
[2015] also reported that certain noncoding regions (pro-
moter, 30 UTR, 50 UTR) of these same genes are also resistant
to allelic variation (ncRVIS). Althoughwe didnot investigate
this aspect of autism risk genes, CNE enrichment in

Figure 2. A, ExAC pLI scores across nonoverlapping groups. Higher pLI scores indicate greater sensitivity to loss-of-function muta-
tions. All gene groups, including controls, exhibit an hourglass formation suggesting genes tend to be either very mutation tolerant or
intolerant with fewer genes falling intermediate. B, Average evolutionary age across nonoverlapping groups. Both autism spectrum dis-
order (ASD) and housekeeping (HK) genes appear to be significantly older than central nervous system (CNS) genes, developmental regu-
latory (DevReg) genes, and controls. C, Number of protein–protein interactions (PPI) according to nonoverlapping groups. All
experimental gene groups significantly differed from size- and ExAC pLI-matched controls as indicated with an asterisk.
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combination with low RVIS/high ExAC pLI scores suggests
that select noncoding regions in risk genes may be similarly
intolerant andworthy of further study.
We extended this line of research by investigating overlap

of common and rare CNVs with our genes of interest, given
that previous studies have reported enrichment for de novo
CNV in autism [Sebat et al., 2007]. We found that the aver-
age likelihood of rare and common CNVs overlapping size-
matched controls is significantly greater than the likelihood
of overlapwith genes within any of the experimental groups
(all P < 0.05) (Fig. 3). In addition, this enrichment was con-
sistent across both “overlapping” and “nonoverlapping”
experimental gene groups. These results further support
overall variation intolerance in the ASD, DevReg, CNS, and
HK gene groups. (See Supplementary Materials 1, Tabs
“CNV,” “ExAC_pLI,” and “RVIS” for full statistical results).

Controlling for Gene Length, Mutation Propensity, and
Clinical Association

Because several of our experimental gene groups vary signifi-
cantly by length as well as mutation propensity, both of
which may influence overall gene structure, it is important
to control for these confounds (see Supplementary Materials
2, Tab “Genomewide_Correlations”). After doing so, we

found that with the exception of TE total/density, ASD genes
exhibited similarly significant patterns as before (gene/pro-
tein length, transcript number, CNE density, etc.) compared
to size- and ExACpLI-matched controls (P < 0.0001–0.0056).
In addition, with some minor exceptions, the same pattern
of results was alsomaintained in the other gene groups, indi-
cating that these patterns of structural enrichment cannot
solely be explained by gene size and mutation propensity
(see SupplementaryMaterials 1 for full results).

Kosmicki et al. [2017] reported on a subclass of de novo
protein truncating variants that are significantly enriched in
individuals with ASD andwhich are also highly LOF intoler-
ant. In order to further address whether any of the gene fea-
tures studied here are related to LOF intolerance, we divided
the ASD gene list according to those genes that fall above
versus below an ExAC pLI score of 0.9 as per methodology
by Kosmicki et al. In doing so, we find that highlymutation
intolerant ASD genes produce longer proteins than their
more tolerant counterparts (t = −2.6964, P = 0.0156) and
maintain a more extensive protein interaction network
(Wilcoxon,W = 1,560.5, P = 0.0192). However, they do not
differ in other features such as age, transcript number, and
CNE and TE densities (all P = 1.000) (see Supplementary
Materials 1, tab “ASD_LOF-intol” for full results). While
these results are somewhatmixed, it does indicate that some

Figure 3. Extent of overlap between the gene groups of interest (overlapping and nonoverlapping) with rare/common copy number
variants (CNV) compared to size-matched controls. All forms of CNV are, on average, comparatively enriched in all size-matched control
groups compared to all experimental gene groups. “All,” all genes within a given group regardless of overlap with other groups; “Only,”
only genes within a given group that do not overlap other experimental gene groups. Abbreviations: ASD, autism spectrum disorder
genes; CNS, central nervous system genes; DevReg, developmental regulatory genes; HK, housekeeping genes.
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of the features associated with the ASD gene group are not
solely related to extrememutation intolerance.

In order to address clinically associated confounds, we
also compared ASD risk genes to a group of syndromic
ID-associated genes (not linked with autism), which we
had compiled and reported in a previous study [Casanova
et al., 2016, 2018]. We found that gene/protein lengths
were significantly longer in the ASD genes compared to
the ID genes (P < 0.0001). In addition, ASD genes differed
from ID genes in all other respects with the exception of
CNE density, TE density, and the number of PPI (dCNE
W = 10,702, P = 1.000; dTE W = 11,836, P = 0.4592; PPI
W = 9,042.5, P = 1.000). Interestingly, although PPI is
more strongly related to pLI scores in the ASD group, PPI
and pLI scores do not share the same intensive relation-
ship among ID genes, suggesting high PPI may be charac-
teristic of ID in general, regardless of mutation tolerance
or of the presence of autism.

Gene age and Network Connectivity

We have previously reported that autism risk genes are, on
average, an evolutionarily older class of genes, which partly
relates to gene function [Casanova, n.d.; Casanova & Casa-
nova, n.d.]. Because older genes experience more gene and
protein interactions than younger ones, we hypothesized
that ASD genes would follow this same trend [Capra, Stolzer,
Durand, & Pollard, 2013]. In agreement with our previous
findings, compared to size- and pLI-matched controls, ASD
risk genes appear to be an evolutionarily older class of genes
with the average age falling between the evolution of single-
celled eukaryotes and the bilaterians (>530million years ago)
(Wilcoxon, pLI W = 18,618, P < 0.001; size W = 18,933,
P < 0.0001) (Fig. 2B). HK genes followed a similar age trend
(Wilcoxon, W = 7,011.5, P < 0.0001), although were not
quite as ancient as the ASD genes, most evolving during the
early bilaterians. However, neither the CNS nor DevReg
genes significantly differed from size- and pLI-matched con-
trols in age,most having evolved at the time of the chordates
or younger (Wilcoxon, CNS pLIW = 5,063, P = 0.8471, CNS
size W = 5,093.5, P = 0.441; DevReg pLI W = 4,824.5,
P = 0.4181,DevReg sizeW = 4,957, P = 0.7818).

As one might expect given their older ages, the protein
products of ASD genes directly interact with a wider range
of proteins than those of matched controls, suggesting
ASD genes maintain a more extensive interaction network
than their younger counterparts and may even function as
hubs as described by Ekman et al. [2006] (Wilcoxon, pLI
W = 12,894.5, P = 0.008; size W = 13,731, P < 0.0001)
(Fig. 2C). Interestingly, the other experimental groups like-
wise exhibited significantly more PPI than size- and pLI-
matched controls (all P < 0.0001), suggesting that while age
may influence the number of PPI as reported by Capra et al.
[2013], factors driving total PPI are highly complex (see Sup-
plementaryMaterials 1 for full statistical results).

Applicability of Findings to Nonsyndromic Risk Genes

Approximately three-fourths of the risk genes used in this
study are syndromically associated, although roughly one-fifth
of those also overlap nonsyndromic categories. Given this
overrepresentationof syndromicmajor effect genes,we cannot
saywhether thegene features identified as unique to this broad
group of genes reliably describe the remainder of nonsyn-
dromicminor effect genes [Parikshak et al., 2013]. However, to
begin to address this question we compared our features of
interest across syndromic and nonsyndromic subgroups.
Syndromic andnonsyndromic subgroups did not significantly
differ in gene size, protein length, transcriptnumber,CNEden-
sity, TE density, variation tolerance (RVIS, ExAC pLI), PPI, or
average gene age (all P = 0.1152–1.000). They did, however,
differ mildly in total CNE and TE (P = 0.0108–0.0153), yet the
relevance of these differences is uncertain. Although these data
are preliminary and limited by small group size and do not
include true minor effect genes, the results suggest that many
of the features that typify the larger ASDgene groupmay apply
to nonsyndromic genes as well. Further research is needed to
address this possibility.

Discussion

The majority of ASD genes in this study are of major effect,
exhibiting relatively strong penetrance for the autism pheno-
type [Abrahams et al., 2013; Casanova et al., 2016]. Seventy-
one percent of the genes are extremely LOF intolerant
(pLI > 0.9) as per Kosmicki et al. [2017], likely driving some of
the significantfindings reported in this study (e.g., longer pro-
teins, more PPI). Other features, however, do not exhibit as
strong a relationship withmutation intolerance, such as gene
length, transcript number, CNE/TEdensity, and gene age.

Given both their phenotypic penetrance and variation
intolerance, according to Parikshak et al. [2013] we may
expect many of the ASD genes to be expressed during early
corticogenesis and enriched in functions such as DNA bind-
ing and transcription regulation. This agrees with our earlier
study [Casanova et al., 2016], which reported a functional
enrichment of epigenetic regulators among many of the
same genes. These genes are also strongly implicated in
autism-associated genetic syndromes accompanied by wide-
spread dysmorphic features, indicating that they play vital
roles not just in corticogenesis butmorphogenesis in general
[Casanova et al., 2018].

The current work indicates that long, ancient genes tend
to be variation intolerant,maintain a complex intragenic reg-
ulatory network, may be hubs within the cellular network,
and are conserved regulators in animalian morphogenesis
(including neurogenesis) [Casanova et al., 2018; Parikshak
et al., 2013].Major effect ASDgenes epitomize this stereotype,
most having evolved from single-celled eukaryotes or early
bilaterians more than half a billion years ago, prior to the
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development of the proto-notochord in early chordates and
long predating theCNS.
Although we have only begun to address whether the

gene features studied here are particular to major effect
ASD genes alone or include even minor effect genes, pre-
vious work by Krishnan et al. [2016] would suggest the
former, finding that LGD variants in ASD do not dispro-
portionately affect long, brain-expressed genes. Our work,
however, indicates that major effect ASD genes do main-
tain some of the features reported here despite control-
ling for size and mutation rates. Interestingly, work by
Krishnan et al. [2016] implies that minor effect genes
may ultimately funnel into similar pathways and devel-
opmental stages within the brain. Further work is needed
to determine if this is the case.
While ASD genes exhibit some featural overlap with

CNS and DevReg genes, due most likely to their clinical
association they are an extreme example along a broad
continuum. Each of these gene groups is larger, produces
longer amino acid sequences, exhibits an increased
intronic density of CNE/TE, produces more transcripts, is
more mutation intolerant, and maintains a larger PPI net-
work than size-matched, pLI-matched, and WGCs. HK
genes on the other hand are small compared to the aver-
age gene size and produce smaller proteins, yet are rela-
tively mutation intolerant, produce more transcript
variants, and exhibit increased CNE/TE density. In addi-
tion, similar to ASD genes, HK genes are ancient, having
on average arisen during the early bilaterians. Unlike ASD
genes, which typically exhibit tissue-specific expression
patterns, HK genes are constitutively expressed across tis-
sue types and are typically involved in more general met-
abolic processes [Eisenberg & Levanon, 2013].
The work presented here provides a brief glimpse into

the evolutionary history of these special gene groups,
particularly those associated with ASD. Their unique yet
overlapping feature landscape affords a record from
which we may view that history, as well as understand
functional and mutational patterns relevant to research
today. That knowledge, in turn, may provide the resear-
cher with a significant advantage when designing clini-
cally relevant studies.
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